
Omkar Kulkarni, ,Deepali Gawali,Shweta Bagul, Dr. B. B. Meshram / International
Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
www.ijera.com Vol. 1, Issue 3, pp.721-729

721 | P a g e

Study of Network File System(NFS) And Its Variations

Omkar Kulkarni1, Deepali Gawali2, Shweta Bagul3, Dr. B. B. Meshram4

Abstract:
A file system is the way in which files are named
and where they are placed logically for storage and
retrieval. The different operating systems have file
systems in which files are placed somewhere in a
hierarchical (tree) structure. Network file system is
any file system that allows access to files from
multiple hosts sharing via a computer network.
This makes it possible for multiple users on
multiple machines to share files and storage
resources. NFS provides transparent and remote
access to file systems. It is propitious to go for NFS
as it can be machine and operating system
independent, provides transparent access, provides
high crash recovery mechanisms and it is highly
Scalable. A Designer can fabricate adaptations in
basic NFS and can use the new variation according
to his need. Some of the variations of NFS are
Replicated NFS, Parallel NFS, Web service based
NFS, Mobile agent based NFS and gVault- Gmail
based NFS etc. These variations can be used in
different architectures and applications according
to the users need.
In this paper, we have mentioned the basic
Network file system (NFS) and a comparative
study of different variations of it. On the basis of
different features, we have made comparison
between different variations of NFS and proposed
a new NFS for a banking application.

Keywords: NFS, DFS, pNFS, variations, gVault

1. INTRODUCTION:
Although disks are becoming so inexpensive that
workstations are seldom set up to be diskless,
file servers are still becoming more and more
crucial in modern network environments acting
as centralized data sharing and storage stations.
Computers use particular kinds of file systems to
store and organize data on media. Any place that
a PC stores data is employing the use of some
type of file system. A file system can be thought
of as an index or database containing the
physical location of every piece of data on a hard
drive. Since its inception in the mid-80’s, the
Network File System (NFS) protocol has been
ubiquitously accepted as a means for file sharing
across a network of compute nodes and across
many operating systems simultaneously.
Network File System (NFS) is a file system
protocol originally developed by Sun
Microsystems in 1984, allowing a user on a
client computer to access files over a network in
a manner similar to how local storage is

accessed. Data storage is the most important
component in a distributed or network system. It
is critical that the file system is made to support
data replication and can tolerate faults. NFS, like
many other protocols, builds on the Open
Network Computing Remote Procedure
Call(ONC RPC) system. The Network File
System is an open standard defined in RFCs,
allowing anyone to implement the protocol. In
computing, a distributed file system or network
file system is any file system that allows access
to files from multiple hosts sharing via
a computer network. This makes it possible for
multiple users on multiple machines to share
files and storage resources. The client nodes do
not have direct access to the underlying block
storage but interact over the network using
a protocol. This makes it possible to restrict
access to the file system depending on access
lists or capabilities on both the servers and the
clients, depending on how the protocol is
designed. A user can make some changes in the
Basic NFS and can use it as per his requirements.
There are different variations of NFS. Some of
them are Replicated NFS, Parallel NFS, Web
service based NFS, Mobile agent based NFS and
gVault- Gmail based NFS etc. In Replicated
NFS, replication and failure transparency are
emphasized in the design of it with the help of
primary backup model and distributed
algorithms. Parallel NFS(pNFS) is now assumed
as an emergent standard protocol for parallel I/O
access in various storage environments
purposefully designed for aggregating I/O
bandwidth from many storage servers. Mobilele
based NFS demonstrate that Web services can
be used to construct a distributed file system,
called the Web-services-based network file
system (WSNFS). One of the goals of the
WSNFS is to provide a platform for file sharing
among heterogeneous distributed file systems.
Mobile Agent based DFS(MADFS) is designed
to gain a good performance on WAN. The
objective of MADFS is to reduce the overhead of
network transfer and cache management inherent
to the distribution of a distributed files system in
WAN. The MADFS organizes hosts into a
hierarchical structure, and uses mobile agents as
the underlying facility for transmission,
communication and synchronization. gVault, a
crypto-graphic network file system that utilizes

Omkar Kulkarni, ,Deepali Gawali,Shweta Bagul, Dr. B. B. Meshram / International
Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
www.ijera.com Vol. 1, Issue 3, pp.721-729

722 | P a g e

the data storage provided by Gmail's web-based
email service.

2.LITERATURE SURVEY:
2.1.Basic NFS:
The NFS provides the transparent, remote access
to file system[1]. Unlike many other file system
implementation, the NFS is designed to be easily
portable to other operating systems and machine
architectures. It uses External data representation
(XDR) specification to describe protocols in a
machine and in a system independent way. The
NFS is implemented on the top of the Remote
procedure call (RPC) package to help simplify
protocol definition, implementation, and
maintenance. The NFS protocol was intended to
be as stateless as possible. That is, a server
should not need to maintain any protocol state
information about any of its clients in order to
function correctly. Stateless servers have a
distinct advantage over stateful servers in the
event of a failure. With stateless servers, a client
need only retry a request until the server
responds; it does not even need to know that the
server has crashed, or the network temporarily
went down. The client of a stateful server, on the
other hand, needs to either detect a server failure
and rebuild the server’s state when it comes back
up, or cause client operations to fail. This may
not sound like an important issue, but it affects
the protocol in some unexpected ways. We feel
that it may be worth a bit of extra complexity in
the protocol to be able to write very simple
servers that do not require fancy crash recovery.
Note that even if a so-called "reliable" transport
protocol such as TCP is used, the client must still
be able to handle interruptions of service by
reopening [1]
The overall design goals of NFS were[1]:
1. Machine and Operating System Independence
–The protocol used should be independent of
UNIX so that an NFS server can supply files to
many different types of clients. It should be
designed to be easily portable to other OS and
machine architecture.
2. Crash Recovery – when clients can mount
remote filesystems from many different servers it
is very important that clients be able to recover
easily from server crashes
3. Transparent Access- NFS should allow
programs to access remote files in exactly the
same way as local files. No pathname parsing, no
special libraries, no recompiling should be
required. Program should not be able to tell
whether a file is remote or local.
4. Reasonable Performance -The design goal is
to make NFS as fast as or about 80% as a local

disk. User will not want to use NFS if it is no
faster than the existing networking utilities.
Architecture of NFS is shown in figure 1[1].
2.2.Basic Design:
The NFS design consists of three major pieces:
1.The protocol 2.The server side 3.The client
side,[1]
2.2.1.The protocol:
The NFS protocol uses the Remote procedure
call mechanism (RPC). RPC helps simplify the
definition, organization and implementation of
remote services. NFS protocol is defined in
terms of a set of procedures, their arguments and
results, and their effects. RPCs are synchronous
i.e. client blocks until the server has completed
the call and returned the results .
NFS uses a stateless protocol. The parameter to
each procedure call contains all of the
information necessary to complete the call, and
server does not need to keep track of any past
requests. This makes crash recovery very easy
i.e. when a server crashes, the client resends NFS
requests until a response is received. When client
is crashed no recovery is necessary for either the
client or server. Using a stateless protocol allows
to avoid complex crash recovery and simplifies
the protocol. New transport protocols can be
plugged in to RPC implementation without
affecting the higher level protocol code. The
NFS uses User Datagram Protocol (UDP) and
internet protocol (IP) for its transport level. UDP
is unreliable, the packet can get lost, but as the
NFS protocol is stateless, client can recover by
trying the call until the packet gets through. The
most common NFS procedure parameter is a
structure called a file handler(fh or fhandle).It is
provided by the server and used by the client to
reference file[1].

 Figure1: Basic NFS Architecture
2.2.2. Server side:
As the NFS server is stateless, when servicing an
NFS request it must commit any modified data to
stable storage before returning results e.g. if a
write request, then not only the data blocks, but

Omkar Kulkarni, ,Deepali Gawali,Shweta Bagul, Dr. B. B. Meshram / International
Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
www.ijera.com Vol. 1, Issue 3, pp.721-729

723 | P a g e

also any indirect block must be flushed if they
have been modified[1].
To make the server work, the generation number
in inode, and a filesystem id in the super block
must be added. These extra numbers make the
server to use inode number, inode generation
number and filesystem id together as fhandle for
a file. Server may handout the fhandle with inode
number of file that is later removed and inode is
reused. When original fhandle comes back, the
server must be able to recognize that inode is
reffering to different file or not[1].
2.2.3. Client Side:
Client side provides the transparent interface to
the NFS. To make transparent access to remote
files, a method to locate files that does not
change the structure of path names should be
used. Some remote file access schemes use
host:path to name remote files. In NFS,
hostname lookup and file address binding is
done once per filesystem by allowing the client
to attach a remote filesystem to a directory using
mount program. So, client only has to deal with
hostname once, at mount time. Transparent
access to different types of filesystems mounted
on a single machine is provided by a new file
system interface in kernel. Each ‘filesystem type’
supports two sets of operations :The virtual
filesystem (VFS) interface defines the procedure
that operate on filesystem as a whole;and the
Virtual Node (vnode) interface defines the
procedure that operate on an individual file
within that file system type
Figure 1 given is a schematic diagram of file
system interface and how NFS uses it[1].
2.2.4.The Filesystem Interface:
[1]The VFS interface is implemented using a
structure that contains the operations that can be
done on a whole filesystem. Vnode interface is a
structure that contains the operations that can be
done on a node(file or directory) within a
filesystem. There is one VFS structure per
mounted filesystem in the kernel and one vnode
structure for each active node. Using this abstract
data type implementation allows the kernel to
treat all filesystems and nodes in the same way
without knowing which underlying filesystem
implementation it is using. Each vnode contains
a pointer to its parent VFS and a pointer to a
mounted-on VFS. Thus, any node in a filesystem
tree can be a mount point for another filesystem.
A root operation is provided in the VFS to return
the root vnode of a mounted filesystem. The root
operation is used instead of just keeping a
pointer so that root vnode for each mounted

filesystem can be released. The operations
defined for the filesystem interface are:
Filesystem operations:
--mount(): system call to mount filesystem
--mount_root(): mount filesystem as root
VFS Operations:
--unmount(vfs): Unmount filesystem
-- root(vfs) returns(vnode): Returns the vnode of
filesystem root
-- sync(vfs):Flush delayed write blocks
Vnode Operations:
 --open(vnode,flags): Make file open
 --close(vnode,flags): Make file closed
 --rdwr(vnode,uio,rwflag,flags): Read or write
a file
 --getattr(vnode) returns(attr): return file
attributes
--access(vnode, mode):Check access permitions
--create(vnode,name,attr,mode): create a file
--remove(vnode,name):Remove a filename from
directory
--rename(vnode,name,tovnode,toname): Rename
a file
--link(vnode, todvnode, name):link to a file
--fsync(vnode):flush dirty blocks of file
--mkdir(vnode,name,attr): create a directory
--rmdir(vnode,name):Remove a directory
--strategy():Read and write filesystem blocks
--bread(vnode,blockno) returns(buf):read a block
 [1]

2.3.Implementation:
The first step in implentation was modification
of the kernel to include filesystem interface.
After making changes and appropriate running
tests, kernel slows down upto 2% only, which is
neglisible. Some of the filesystem routines must
be rewritten completely to build NFS. Namei,
the routine that does path name lookup, was
changed to use the vnode lookup operation. The
direnter routine, which adds new directory
entries, also had to be modified to do directory
locking during directory rename operations
because inode locking is no longer available at
this level, and vnodes are never locked. To avoid
having a fixed upper limit on the number of
active nodes and VFS structures, a memory
allocater is added to kernel so that structures
must be allocated and freed dynamically. A new
system call, getdirentries, was added to read
directory entries from different types of
filesystems. Kernel readdir library routine was
modified to use the new system call so programs
would not have to be rewritten.After porting user
level RPC and XDR libraries, kernel to kernel or
kernel to user RPC calls can be done
successfully. Once RPC and vnode kernel were

Omkar Kulkarni, ,Deepali Gawali,Shweta Bagul, Dr. B. B. Meshram / International
Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
www.ijera.com Vol. 1, Issue 3, pp.721-729

724 | P a g e

in place the, implementation of NFS is simply
writing routines to do the NFS protocol,
implementing an RPC server for NFS procedures
in the kernel, and implementing a filesystem
interface which translates vnode operations into
NFS remote procedure call.The mount protocol
was built into the NFS protocol. On the client
side, mount command was modified to take
additional arguments including filesystem type
and option string. Filesystem type allows one
mount command to mount any type of
filesystem. Option string is used to pass optional
flags to the different filesystem mount system
calls. For example NFS allow two flavors of
mount i.e. hard and soft. A hard mounted
filesystem will retry NFS calls forever if server
goes down, while a soft mount gives up after a
while and returns an error[1].
2.4. Variations Of NFS:
2.4.1. Replicated NFS and transparency:
2.4.1.1. Introduction:
File servers acting as centralized data sharing
and storage stations are very crucial in modern
network environments. Failure and inefficiency
of a file server would be unacceptable and thus
data replication is necessary to provide fault-
tolerant and high-performance services. In a
network file service with replication, a cluster of
two or more servers work together to provide the
service. File information is replicated in whole or
in stripes on the servers. Service will not stop
with at least one server alive. The performance
may degrade and the risk of losing data may rise
as the number of servers decreases due to
individual failures, but since repaired servers
may join back into the service in time, the level
of replication can be restored. Transparency in a
replicated network file service consists of several
major issues. In addition to location transparency
and name transparency that most articles in
designing distributed or network file services
focus on, replication transparency, failure
transparency, and performance transparency are
also vital in a replicated file service. Location
and name transparency are major considerations
when designing a remote file access mechanism.
Replication and failure transparency are required
when the file service consists replicated servers
in order to improve reliability. The client
program may or may not have to know the
identification of each server, while providing;
transparent user access. In the presence of
failures, the client program may or may not have
to explicitly change its access to another server.
It is crucial that the client programs do not have
to know anything about replication and failures.

Replication transparency and failure
transparency are emphasized in the design. Any
NFS client implemented on existing systems can
use our fault-tolerant service without any
modifications. In the suggested prototype, the
simple primary-backup model is used to ensure
data consistency between servers. Two
distributed algorithms were designed to monitor
and maintain the server modes. TOFF
(Transparent Operation Fault-tolerant
Filesystem) is presented, which is a replicated
NFS that follows the Sun protocol[2].
1.1) The goals of the development of TOFF are:
1.fault-tolerance: supporting a file service that
has high data availability and reliability
2.transparency: providing replication transparent
and failure transparent service to users and client
programs
3. standardized: using an industrial standard
network protocol and file service protocol.
4. compatibility: allowing any client stations that
support the protocol to use TOFF without any
modifications
5.low cost and high performance: utilizing low
cost personal computers as dedicated servers to
decrease replication cost but with comparable or
better performance as commercial workstation
implementations.
2.4.1.2.File Consistency:
[2]In the earlier stage of the development of
TOFF, they chose to use the simple primary
backup model for server configuration. With
considerations on performance, non modification
requests are served only by the primary server
and are not redirected to backup servers. Since
the file images on all servers are totally
consistent, no voting is necessary to obtain the
up-to-date data. Under this model, several
servers within the same subnet form a fault-
tolerant file service group, with one of the
servers being the primary server. The other
servers are the backup servers. Normally, the
primary server is the very first server that was
started and already providing service. All servers
started after the primary will try to join the group
by registering to the primary. Once
acknowledged, the new server enters a rebuilding
stage, when it compares its file storage hierarchy
and file contents with the primary server, updates
or downloads the new files, and removes the
files that no more exist. After the rebuilding
process, the file system of the new server is
consistent with the primary server, and the new
server can become an official backup server,
receiving redirected-requests from the primary
server. On the other hand, the backup servers

Omkar Kulkarni, ,Deepali Gawali,Shweta Bagul, Dr. B. B. Meshram / International
Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
www.ijera.com Vol. 1, Issue 3, pp.721-729

725 | P a g e

monitor the state of the primary server and when
they find that the primary server has failed, the
backup servers can elect a new primary server
with the "primary server election algorithm".

2.4.1.3.Transparency:
Replication transparency and failure
transparency are the major goals of TOFF
With replication transparency, the clients do not
have knowledge that the data is being replicated,
and do not have to maintain the list of replicated
servers.[2]
With failure transparency, the clients do not have
knowledge that any server in the service group
may have failed, even if it is the primary server
After the primary server fails, a new primary
server is elected among the backup servers
How do the clients know where to send their
requests when a new primary server appears?
Answer: by modifying RPC client program or by
setting identical ethernet addresses and IP
addresses on all servers in the same service
groupBecause the machines used as servers are
low-cost dedicated systems, and only the
primary server replies to TCP/IP packets

The first approach is not desirable since the goal
of TOFF is to be totally transparent to existing
clients. IP multicasting can work, but in many
currently existing systems, IP multicasting is not
yet supported. Some NFS client designs use the
replying source IP information for timeout
control, and thus would not work with multicast
servers. In TOFF, a special technique is used to
solve this problem, by setting identical ethemet
addresses and IP addresses on all servers in the
same service group. Because the machines used
as servers are low-cost dedicated systems, and
only the primary server replies to TCPIIP
packets, no compatibility and consistency
problems would occur. The backup servers can
all receive the client requests in order to monitor
the primary server action, but they do not reply
to the clients[2].

2.4.2. Parallel NFS:
[3]Since its inception in the mid-80’s, the
Network File System protocol has been
universally accepted as a means for file sharing
across a network of compute nodes and across
many operating systems simultaneously Parallel
NFS (pNFS) was further introduced as an
extension of NFS to meet the bandwidth
demands of these applications[3]. It aims for this
goal by decoupling the data path of NFS from its
control path, thereby enabling concurrent I/O

streams from many client processes to storage
servers. Compared to existing parallel file
systems such as GPFS, Panasas, Lustre, and
PVFS, pNFS stands out as the only open
standard that is currently being developed and
approved by many commercial and non-profit
organizations[3].
Parallel NFS (pNFS) is touted as an emergent
standard protocol for parallel I/O access in
various storage environments. Several pNFS
prototypes have been implemented for initial
validation and protocol examination. Previous
efforts have focused on realizing the pNFS
protocol to expose the best bandwidth potential
from underlying file and storage systems. We
discuss its architecture and propose a direct I/O
request flow protocol to improve its
performance. Figure shows a typical pNFS.

Figure 2:pNFS

2.4.3.Mobile Agent Based NFS:
2.4.3.1.Introduction[4]:
The conventional distributed file system is
designed for LAN environment. They always
play poor performance in WAN. Here, a novel
distributed file system: The Mobile Agent-based
Distributed File System (MADFS) is presented.
The objective of MADFS is to reduce the
overhead of network transfer and cache
management inherent to the distribution of a
distributed files system in WAN. The MADFS
organizes hosts into a hierarchical structure, and
uses mobile agents as the underlying facility for
transmission, communication and
synchronization instead of RPC call. Also a
novel cache coherency mechanism for MADFS:
Hierarchical and Convergent Cache Coherency
Mechanism (HCCM) is presented. HCCM can
effectively reduce the overhead of cache
coherency management in distributed file
system. The comparing results show that HCMM
has better performance in WAN. In conclusion,

Omkar Kulkarni, ,Deepali Gawali,Shweta Bagul, Dr. B. B. Meshram / International
Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
www.ijera.com Vol. 1, Issue 3, pp.721-729

726 | P a g e

MADFS can achieve better performance and
availability than conventional distributed file
system in WAN.

2.4.3.2.The system structure of MADFS:

 figure 3:MADFS[4]
Every server MADFS run the environment for
mobile agent and the whole MADFS is a large
platform for mobile agent
In MADFS, agent is in charge of transfer,
communication and management
In MADFS, all agents can be classified as
following[3]:
IA (Interface Agent). IA runs on the client host
and accepts the file system calls sent by client.
Then, IA processes these calls by dispatching,
controlling or coordinating with other agents
WA (Working Agent). WA accepts orders or
applications from IA, moves to the target server
to execute file operation, and then return the
result of execution
DMA (Domain Manage Agent). DMA is
responsible for name, cache, property and space
management and access control management in a
domain. DMA can duplicate itself and actively
move to target server in order to be close to the
data to gain higher processing performance
MMA (Main Management Agent). MMA is
responsible for the management and coordination
of all DMAs in MADFS. MMA and DMA can
cooperate with each other to accomplish the
management work in MADFS
The advantages in the hierarchical architecture of
MADFS are as following:
1)DMA is responsible for the management of a
domain and MMA is responsible for the
management of all the DMAs. This architecture

can share all the overloads of communication
and cache management over all DMA, and avoid
the single central server to be the bottleneck of
system. 2) Hosts in a Domain are connected with
each other through LAN which has wide
bandwidth and short transfer delay. Therefore,
the communication in domain can gain a better
performance by using the protocol designed for
LAN. Meanwhile, the security operation can be
properly reduced because that the servers in a
domain are always inter-trusted, and then the
more performance improvement can be obtained.
When communication is across domains,
MADFS could use the special protocols and
mechanisms that are designed for WAN to gain
better performance.

2.4.4. Web Service Based NFS:
[5]Web services are Web-based enterprise
applications that use open, XML-based standards
and transport protocols to exchange data between
calling clients and servers. Web services can be
used to construct a distributed file system, called
the Web-services-based network file system
(WSNFS). One of the goals of the WSNFS is to
provide a platform for file sharing among
heterogeneous distributed file systems.

 Figure 4:WSNFS[5]
Figure shows the network file system proposed
which is called the Web-services-based network
file system (WSNFS). A Web services file
gateway is installed to overcome the problems
associated with file sharing among
heterogeneous file servers. All of the file
directories of the file servers that are to be shared
by the client are mounted on the client. The
client sends file-operation requests to the
gateway, which is responsible for forwarding
each request to the appropriate file server and
returning the result to the client.

Omkar Kulkarni, ,Deepali Gawali,Shweta Bagul, Dr. B. B. Meshram / International
Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
www.ijera.com Vol. 1, Issue 3, pp.721-729

727 | P a g e

2.4.5. gVault:Gmail based cryptographic
NFS:
[8]gVault is a crypto-graphic network file system
that utilizes the data storage provided by Gmail's
web-based email service. Such a file system
effectively provides users with an easily
accessible free network drive on the Internet.
gVault provides numerous bene¯ts to the users,
including: a) Secure remote access: Users can
access their data securely from any machine
connected to the Internet; b) Availability: The
data is available 24/7; and c) Storage capacity:
Gmail provides a large amount of storage space
to each user.

 Figure 5: gVault[8]
The figure shows the overall architecture of
gVault. The clients interact with gVault through
the File System Local and the File System
Remote components. The File System Local
component provides a GUI interface to the local
file system where the application is running. The
File System Remote component provides a GUI
interface to the file system stored at the remote
server. The interface of both these components is
similar to the interfaces that exist to any modern
file system. The Object Model Translator maps
the file system the user is outsourcing into data
objects. The Cryptographic Module supports the
object model translator in the cryptographic
operations. The HTTP Handler translates file
operations into HTTP operations that Gmail
servers support.

2.4.6. IncFS An Integrated High-Performance
Distributed File System Based On NFS
Scientific computing applications running in the
cluster environment require high performance
distributed file system to store and share data. A
new approach, the IncFS , of building a high
performance distributed file system by
integrating many NFS servers is presented in this
paper. The IncFS is aimed at providing a simple

and convenient way to achieve high aggregate
I/O bandwidth for scientific computing
applications that require intensive concurrent file
access. The IncFS uses a hyper structure to
integrate multiple NFS file systems. And it
provides multiple data layouts to effectively
distribute file data among those NFS servers.
Performance evaluations demonstrate that the
IncFS has very good data access bandwidth with
near perfect scalability, while still maintains an
acceptable meta data throughput. The global
view of IncFS is as shown in figure 6.

Figure 6: Global view of IncFS

3.Comparison Of All variations Of NFS
studied above::
After studying different variations of NFS, their
features and architecture, we can summarize the
study and comparison as shown in the table 3.1
.
Table 3.1: Comparison of NFS variations
Variation Replicate

d NFS
Paralle
l NFS

WSNF
S

MADF
S

gVault

Property

Transparen
cy

High Low Mediu
m

High Mrdiu
m

Scalability Low Mediu
m

Mediu
m

High Low

Fault
Tolerence

High Low Low Mediu
m

Low

Security Low Low Mediu
m

Mediu
m

High

Efficiency Medium High High Medium Low

4.Proposed System: Design of NFS for a
Banking Application with the help of above
studied variations :

Omkar Kulkarni, ,Deepali Gawali,Shweta Bagul, Dr. B. B. Meshram / International
Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
www.ijera.com Vol. 1, Issue 3, pp.721-729

728 | P a g e

4.1.Basic Information:
In our modern bank application, all the
information about the transactions, customers,
account details etc. is stored on a file server
which acts as a centralized data sharing. These
storage stations are very crucial in modern
network environment. The information and data
stored on remote server is accessed by remote
users using NFS.
4.2. Steps to build Proposed NFS:
Step 1: The failure and inefficiency of file server
would be unacceptable, thus data replication is
necessary to provide fault tolerance and high
performance service. So, first we used a primary
server, which is the very first server, after
starting of which, remaining backup servers can
join the group. This provides high data
availability and fault tolerance. For this the
TOFF(Transparent Operation fault tolerant File
system) is used. If any non modification request
is coming from client side, the primary server
can reply it without redirection or it may redirect
the request to the backup server. But, if any
modification request is coming, it will redirect it
to backup servers. The primary server will be
decided by selection algorithm. By this step we
are providing the high transparency.

Figure7: step1(replicated NFS)

Step 2: In the implementation of NFS for this
application, features of pNFS are added, where
clients can access the storage devices directly
and parallely. pNFS supports the 3 storage levels
i.e. object level, file level and block level. It will
improve the scalability.

Figure 8: step 2(pNFS features)

Step 3: A web service file gateway is installed in
the application, which is helpful to overcome the
problems associated with the file sharing among
the heterogeneous file servers. All the requests
will be forwarded to the appropriate file server
by gateway coming from the clients.
Step 4: Now, the most important issue is taken in
the consideration i. e. security. The data is very
crucial and important, so care should be taken to
avoid the outside and inside attacks on data. In
our application, a interface is provide for the
user. User need to enter master password, a user
name and a password for access of the files. In
our designed NFS, a session is created after
successful login of the user and it will work as
HTTP client. All the file operations that the user
performs at the client side is mapped to their
equivalent HTTP requests. Our NFS implements
the necessary cryptographic techniques to ensure
the security of user data in the translation of file
operations to HTTP requests.

Figure 9 :step4(cryptographic features)

Step 5: NFS is implemented in such a way that it
is supported in WAN. The hosts are organized
into the hierarchical structure i.e. main server,
backup server, domain server, clients etc. The
mobile agents are used as underlying technology
for transferring and communication of data.

Omkar Kulkarni, ,Deepali Gawali,Shweta Bagul, Dr. B. B. Meshram / International
Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
www.ijera.com Vol. 1, Issue 3, pp.721-729

729 | P a g e

5.Proposed Architecture:

Figure 10: Proposed Architecture

As shown in the figure 9, the architecture
diagram for proposed NFS is shown. The
Employee/ users are provided with a
cryptographic interface, where they can perform
different operations. A gateway is installed to
support different web services. It will support
different DFS. The users can have parallel access
to the storage nodes as in pNFS.

6.Conclusion:
We can conclude that NFS protocol provides the
efficient way to access the remote data. A user
can’t understand whether he is accessing remote
data or local data. NFS along with different
underlying technologies for communication
provide most flexible method of remote file
access available today. Here we studied different
implementations of NFS in different situations

7.References:
[1]Russel Sandberg, David Goldberg “Design
and implementation of Sun network file system”,
Sun Microsystems inc.
[2]Charles Changli Chin, Shang-Rong Tsai
“Transparency in a Replicated Network File
System” 1996 IEEE
[3]Weikuan Yu, Jeffrey S. Vetter, “Initial
Characterization of Parallel NFS
implementation” 2010 IEEE
[4]Jun Lu,Bin Du, Yi Zhu,“MADFS: The
Mobile Agent-based Distributed Network File
system” 2009 IEEE

[5]Gwan-Hwan Hwang, Chih-Hao Yu, “Design
and Implementation of a Web-Services-Based
Network File System” 2006 IEEE
[6]Thomas E. Andersone, Michael D. Dahlin
“Serverless Network File System”, ACM
Symposium, ACM transactions on Computer Sys
[7]Michael N. Nelson, Brent B. Welch,“Caching
in Sprite Network file system” ACM Transaction
on Computer Sys.. 1988
[8]Ravi Chandra, Roberto Gamboni “gVault:A
Gmail based Cryptographic NFS”
[9]Dean Hildebrand, Lee Ward “Large Files,
Small Writes, And pNFS” May 2010. CITI
Technical Report
[10]Dean Hildebrand, Peter Honeyman “Direct-
pNFS: Scalable, Transparent, and versatile
access to parallel file systems” June 2007 ACM
[11] Tatsuya Igarashi, Koichi Hayakawa, Takuya
Nishimura “Home Network File System For
Home Network Based On IEEE-1394
Technology” IEEE Transactions on Consumer
Electronics, Vol. 45, No.3, August 1999
[12] Yi Zhao, Rongfeng Tang, Jin Xiong, Jie Ma
“IncFS: An Integrated High-Performance
Distributed File System Based on NFS”
[13] Rohit Dube, Cynthia D. Rais, and Satish K.
Tripathi “Improving NFS Performance Over
Wireless Links” IEEE Transactions On
Computers, VOL. 46, NO. 3, March 1997
[14] Song Jiang, Xuechen Zhang, Shuang Liang,
and Kei Davis “Improving Networked File
System Performance Using a Locality-Aware
Cooperative Cache Protocol” IEEE Transactions
On Computers, VOL. 59, NO. 11, November
2010
[15] Weikuan Yu, Oleg Drokin, Jeffrey S.
Vetter, “Design, Implementation, and Evaluation
of Transparent pNFS on Lustre” 2009 IEEE
[16] Alexandros Batsakis and Randal Burns,
“NFS-CD: Write-Enabled Cooperative Caching
in NFS” IEEE Transactions On Parallel And
Distributed Systems, VOL. 19, NO. 3, March
2008
[17] F. Garcia, A. Calderon, J. Carretero, J. M.
Perez, and J. Fernandez “A Parallel and Fault
Tolerant File System Based on NFS Servers”
2003 IEEE
[18]A. Calderon, F. Garcia, J. Carretero, J. Perez,
and J. Fernandez. “An Implementation of MPI-
IO on Expand: A Parallel File System Based on
NFS Servers” Lecture Notes in Computer
Science, 2474:306–313, 2002.
[19] P. Carns, W. L. III, R. Ross, and R. Takhur.
“PVFS: A Parallel File System for Linux
Clusters” Technical Report ANL/MCS-P804-04
[20]www.google.com

